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This Report deals with the modulation of signals by discrete random 
and random-like sequences which may change state only at integral 
multiples of some basic time division to. These signals may be modu- 
lated (sampled) in many fashions, depending mainly upon the types 
of sequences 2nd signals available, the desired outpiit phenomena, and 
the sequential rate. 

In general, a sequence may sample a set of signals at random, or it 
may sample in some fixed deterministic fashion. Furthermore, deter- 
ministic processes may be constructed to possess certain random-like 
qualities. Special attention is given in this Report to random Markov 
chains and linear pseudo-random sequences; the signals selected for 
modulation are not restricted to any one class, and examples are given 
for sinusoids and square waves. 

Specifically, the effects of carrier-signal waveform and type of 
sequence upon the over-a11 power spectrum are considered. In the case 
of sinusoidal modulation, the effect of phase shift is investigated. 

1. IC c S 

The notion of having a signal or set of signah modu- 
lated by a sequence is not new in the field of mmmuni- 
cations. In fact, the whole theory of transmission of coded 
information by multiplexing, frequency-shift keying 
(FSK), CRV telegraphy, etc., has used this concept for 
years. In c7N telegraphy, a sequence (called Morse Code) 
chooses between a signal (carrier) and an absence of 
signal. In FSK systems, a sequence (called teletype) is 
used to choose between the two radiofrequencies which 
are transmitted as information. Frequency-modulated 
multiplex carries this process a step further, allowing a 
sequence (called the sampler) to gate between a number 
of signals so that several information channels are sand- 
wiched together in transmission 

In thii Report, a sequence is defined to be a discrete 
time function which may change statcs only at integral 
multiples of some basic time division to. Furthermore, the 

number a of states is finite. If these states are limited in 
some fashion to a set of signals which the sequence u 
allowed to sample, the sequence is said to modulate the 
set of sampled signals. The set of signals is called the 
moduI0ted set of signals. 

The sequences which modulate the carriefs in these 
systems may, in general, appear random, as in the case 
of telegraphy, oi strongly periodic, as in the case of 
multiplex with slowly changing channels. Sometimes, the 
sequenm are specifically chosen to Rare certain proper- 
ties, in order to minimize noise and other unZesirab1e 
effeck (Ref. 1). 

An attempt has been made to treat sequence-modulated 
processes in general, and in such a way that the reada 
has a physical insight into the inner workings of the 
mathematical models. For this reason. a short section on 
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fundamentals is included. Appendices 2-5 added to the 
main text to provide a more rigorous mathematical basis 
€or some of the ideas, to derive certain resulk, and to 
expand upon certain concepts which the authors consider 
too involved to include in the text proper. . 

Of basic importance in this Report is the question Ot 
the spectral distribution (Refs. 2 and 3) of such sequence- 
modulated devices. In particular, the spectral density 
of sign& modulated by random Markov chains (Ref. 4) 
(the discrete analog of gaussian processes) and by 
random-like sequences which look Markovian (with 
respect to spectral dtnsity) are to be considered. 

Sectim 11 treats the aperiodic hlarkov process gener- 
ally, and two special cases are considered in detail. One 
outstanding result derived in this Section is the necessary 
and sufficient condition for the absence of spikes in the 
spectral density of a Xiarkov process. This simple con- 
dition states that the sum of the probability-weighted 
sampled waveforms must vanish for all time values: 

The two special cases mentioned above are processes 
which allow certain simplifications to be made in the 
spectral equation. --'%e first of these is a process that 
allows the sequence to sample the signals h,(t) and 
-h,(t)  without discrimination (that is, without bias as to 
which is the -positive" and which is the -negative" sig- 
nal). This process. called NEP (negative equally prob- 
able), has a spectral density which is merely the weighted 
sum of the energy spectra of the signals over one basic 
time uriit; there are no spectral spikes present. Such 
a process, while being mathematically quite simple to 
macipulate, is physically difficult to realize. m i s  diffi- 
culty arises from the inability to create a sequence which- 
changes states instantly; that is, a sequence which is 
usable in a modulation scheme must be some sort of 
electrid signal (see Fig. 1) and therefore has certain 
undesirable aspects as s result of nm-zero rise times. For 
examp'? let a sinusoid carrier be multiplied by + I  or 
-1, as ciictated by a binary scquence. This process may 
be mechanized by a phase-modulator which swings +90 
and -90 deg with the incoming (non-perfect) sequence 
voltage. The desired 18O-deg change does not occur 
instantly; hence, the camer goes through all intermediate 
phases in the trqnsit. It is found experimentally that this 
does not change the over-all spectrum too greatly if the 

transition is rapid; however, as the condition becomes 
more serious, spikes begin to appear in the spectrum. 

The damaging factor in the scheme is the inability of 
physical equipment to mechanize a discontinuity in the 
slope of a signal. One obvious solution to thii problem 
is to eliminate the discontinuity at transition times, at the 
same time maintaining the condition for no spectral 
Iines. This, too, is difficult to generate, and therefore the 
remaining alternative is to try to reduce the discoc'huity 
at transitions by requiring the signal to preserve the sign 
of its slope at these times. When the carrier signals are 
sinusoids, this means that the modulation allows a jump 
between frequencies o J y  when the carrier passes h u g b  
zero, and when the waveform of the new frequency also 
goes through zero in the same direction. This is the second 
type of hlarkw process discussed in Sec 11. 

The second Markov process, called N E B  (negative 
equally probable-same sigfi slope), is one in which the 
over-all probability of sampling h,(t) is the same as for 
-h, ( t ) ;  however, transitions between states are restricted 
in such a fashion tbit the slope of the modulated wave- 
form does not change sign, so that &e transition is a 
smoother one. Since sampling probabilities are equal, 
there are no lines in the KEPS spectrum, and because 
of the smoother changeover. the spectrum amund peaks 
falls off more rapidly (Ref. 5) than the NEP counterpart. 

Random sequence are generally easy to work with 
mathematically because of certain averaging procedures 
available. These p r e s s e s  allow the calculation of spectra 
based upon a statistical approach to a signal-modulation 
scheme. On the other hand, a statistically random 
sequence is sometimes not desirable as a modulation 
technique. For example, a rnultiplex receiver must kn0u7 
the code used at the transmitter to decode the incoming 
signal into the sepaiate channels. 

It would be desirable, then, to be able to generate some 
sequences dctenninistiurZly, k~ such a way that some of 
the proprrties of pnrely random signals are inherent in 
them. The type of random property, of course, dictates 
the type of sequence which may be geaerated. 

Pseudo-random (Ref. 6) sequences are periodic 
sequences which have certain random-like properties and 
arc commonly gencrated by some recursive function of 

2 
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past states in the sequence. When the generating logic 
is linear, the sequence is called a linear recumngseguence 
(Ref. 7). 

The quantity C (f). on the other hand, gives a measure 
of the distribution of power throughout the frequency 
domain; that is, it indicdtes the hequencies at which the 
sigral power exists. N%en the distribution is continuous, 
it is called a cmtinuous spedml density, and when con- 
centntions of power occur at discrcte frequencies. ~ < n  

. 

The spectral density of linear sequences is fciind, and 
again ' p i a l  -' are The are ea'1ed . 
the ISEF (negative equally hequent) and NEFS (negative 
equally frequent-same sign slope) processes and are 
merely the periodic analogs of the NEP and N E E  
Markov processes. It is shown that the binary NEP and 
NEF spectra appear to be the same when the period of 
the linear sequence is long; also, the 4-level N E E  and 
NEFS spectra under the same restriction are greatly alike. 

Examples of each process are given for modulated 
sine waves and square waves, and experimental curves 
are plotted along with theoretical calculated values. 

A. Fundamentals of Signals 
There is associated with each signal y ( t )  a fiinction 

R ( ~ , T ) ,  called its autocomelation. and a function Go, 
called its power spectrum (Refs. 2 and 3). These func- 
tions are completely determined by the properties of 
y ( t )  and do much in specifying the character of y (t). The 
quantities are given by 

where E[X] is the mathematical expected value of X, 
and YT( f )  is the Fourier transform of the signal yr (t). 
defined as y (t) over a range ( - T, T) and zero elsewhere. 
The first Equation indicates that R (t,  T )  is a measure of 
the similarity between the signal at  times t and t f T. It 
often occurs that this similarity does not depend on the 
starting &me at all but only on the tirne difference T 
between samples. When this is the case, y (t) is said to be 
sfationay (in the wide sense), and its mnelation is 

This Equation is restricted, however, to signals whose 
time averages are the statistical expected values as stated 
above (the so-called ergodic property). This condition 
need not cause great concern, since all signals in this 
Report shidl be assumed to have this propcrty. 

is sdd to be a spike (or line) spectrum. Often, sign& 
possess b t h  types of spectre 

Since both R ( T )  and C(f) are functions of ~ ( t ) ,  one 
might suspect that there exists a relation between R(T)  
and C(f) which excludes the signal y(t) itself. This. in 
fact, is the case and is called the Wiener-Knintchine 
relation (Ref. 2): 

(3) 

This relation states that the two functions are Fourig 
transforms of each other. The Foilrier transformation is 
biunique; that is, i i  G ( f )  has a transform, then it has only 
one such tramform. complrtely determined by G (f). here 
designated as R(T) .  Conversely. if R (T) has a Fourier 
transform, it is G(f) .  However, many signals may have 
the same autocorrelation fundion, since R ( T )  is not a 
function of the time origin of its generating signal. 

Similarly, a cross-correlation function may be defined 
in terms of two signals, 9, (t) and y, (t): 

. r-r 
(41 

The transform of this function is known as the cross- 
spcctral density C,,(ff. The functions G,,(f) and RIZ(f)  
fonn a Fourier-transform pair in exactly the same fashion 
as did R ( r )  and G 0) of Eq. (3). Correlation fmdions on 
a set of given signals may he put into a matrix. called the 
correlation matrix; similarly, the matrix of spectral densi- 
ties is called the spctrul nmtrix. 

It is well known that periodic signals possess periodic 
mrrelation functions. and that the spectra of such sig- 
nals are mmposed entirely of impiilse functions at mul- 
tiples of the fundamental frequency of the correlation. 
Furthermwe, it is known that the Fourier transform of 
a periodic process x ( t )  is of the form (Refs. 3 and 5) 
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where T is the period of x ( t )  and X o ( f )  is the Fourier 
transform of one cycle of x ( t ) .  If x ( t )  is assumed to be 
an autocorrelation function, then the corresponding 
periodic signal has power spectrum 

where 

Equation (6) shows that a periodic signal has a power 
spectrum composed entirely of spikes, .veighted by an 
-envelope.” This envelope is the power spectrum of the 
aperiodic process which has identical correlation in the 
range 4 - T/2, T/2),  and is zero elsewhere. (If the auto- 
correlation were a non-zero constant outside this range, 
this would only change the dc power level in the spectral 
density, and if it were non-zero, but only approximately 
constant. the envelope would be in slight error, depend- 
ing on the gravity of the fluctuation outside the specified 
range). 

B. Sequence Modulation 
The fundamentals described in Part A will be used in 

this Report basically to find specific power spectra from 
a device shown in Fig. 1. 

Briefly, the system works as follows: A t  regular to 
time intervzls. a clock pulse causes a sequence generator 
to send the next element of the sequence to a modulator. 
This element of the sequence is chosen to he one of cer- 
tain quantities E,. - * - , E.. The modulator is cornposed 
of the signals h, (t), - - , h. (t), which exist only in the 
interval (0, to). The sequence element Ei is essentially the 
statement, “Let y (1) in this to interval be the signal hi (t). 
shifted to the present time.“ That is to say, the sequence 
{ E i )  may be regarded as a sequence of decisions as to 
which signal shall comprise y ( t )  at any given time. In 
:his light, the sequence may be regarded as one of Dirac 
delta-functions (t - mt,,). r ich element of which con- 
volves the modulating signal hi(t) to the time interval 
[mt- (m - 1) t.1. 

Fig. 1. Sequence Modulation Technique 

For the purposes of discussion, the system, as shown 
in Fig. 1, may be replaced by the one in Fig. !2, in which 
modulated functions { h , ( t ) }  are now the unit-impulse 
responses from the ith input to the ouiput. The a inputs 
are delta functions sent from the q u e n c e  generator. 
The ith input signal is a series of delta functions at those 
times at which the sequence generator requires hi (t) to 
be the output signal. Designating the ith such input to 
be a i  (t)  

where V I  takes on only the proper values deswibed above. 

I 
Fig. 1. Mathematical Model for Fig. 1 

The transfer function between input i and the output is 
merely the Fourier transform of h, (t). H i  (f). The network 
is linear, so that superposition is allwed, and the, output 
(Ref. 3) is 

(9) 
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where H: is the complex conjugate of Hi.  
Notice the term lim ( 1 / 2 Z ' ) ~ 3 f ) ~ ~ , ( f )  in this equa- 

r-.m 
tion, which appears as some weighting function for 
the term H:( f )  Ht (f). This weighting function, which 
shall be designated Gik (f), is  

whose transform may be found by convolution; that is, if 

Z ( f l =  X ; f ) Y ( f )  
then 

The transfcrm of Gik(f), therefore, is 

From this it is seen that R,t (7 )  i s  a correlation function, 
namely, that correlation which exists between the states 
Ei and E* of the sequence. 

This result may also be derived in a much more rigor- 
ous fashion, as is done in Appendices A and B. 

The & ( T )  are correlations between the states in a 
single sequence. This allows a single sequence of (I 

states to be thought of as being u binary sequences, each 
zero everywhere except in that interval during which 
the original sequence is E i ,  at which time the ith binary 
sequence is non-zerci. Since there is really only one 
sequence, the R i k  (7) are actually "autocorrelations" of 
some fashion or another, and the whole correlation matrix 
is also some form of correlation of the sequence with 
itself. However, it is difficult to assign meaning to auto- 
correlation of a sequence when its states are decisions. 
It is for this reason that it was decided to break the 
single sequence into u parallel binary sequences, each of 
which (the it%) is of the form "no &-yes Ed" or 3-1." 

b 

Notice in the spectral density of the output 

that a11 sequences which aRow the products H:( f )  HI (f) 
to be weighted in the same fashion produce identical 
spectra. Therefore, if two sequences modulate a set of 
aperiodic signals {h, (t)} which exist only in the !nterval 
(0, to), then the power spectral densities of the two 
signals are identical if the sequences have the same cor- 
relation matrix. 

If the sequence is a periodic one, with all correlation 
functions having the same period T. then each may he 
\mitten in the same form as Eq. (6). so that the power 
spectrum is given by the Equation 

( ' 5 )  

where C,,, is the Fourier transform of one cycle of R,t  (7). 

Notice in Eq. (15) that the term in brackets is the power 
spectrum of a process whose correlation functions in the 
range (- T/2,  T/B) are identical to those of the periodic 
process and zero outside this range (or constant, or 
nearly constant, depending on the degree to which a 
change in dc level and/or a slight deviation in envelop 
is acceptable). 

Basically, what has been shown by this dismssion is 
that given a time sequence, each state of which chooses 
a specific element of a sampled set (h ,  (t)), the power 
spectrum depends upon certain spectral densities of the 
sequence and upon the energy- spectral densities of the 
sampled waveforms. The remainder of this Report is 
concerned with determining the effects of modulated set 
waveform and type of time sequence upon this power 
spectnim. There are. however. a few general remarks 
which can be made before these special cases are applied. 

Consider a segment of a given sequence of length 
2Lt,, During this interval, transitions between states of 
the sequence occur, giving rise to the numbers of tran- 
sition N:;', which indicate the number of times which 
state $, occurs at the nth trans{tion after E i .  Obviously, 
t5e total number of times E, occurs in this length 2Lt. 
i s  
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In terms of these numbers, define the quantities 

and 

when such quantities exist. 

These quantities are therelative frequencies with which 
certain tramitions occur and the stationary frequencies 
of occurrence, respectively. If the pmess is random, 
these quantities =e known as the probabilities of transi- 
ti011 and occurrence. If the process is periodic of length 
pt,,, then the quantities p!;' are also periodic. with period 
p at most. Specific processes are discussed in greater 
deetaG in later Sections of this Report. 

The sequence correlations are 

These functiens are impulses at those values of T such that 
both T and t are integral multiples of to, E, having occurred 
at  time t and E& at t + 7. Obviously, if T = nt,, the DUIIP- 

ber of times this criterion is met in a given length 2L 
is N!:) for T pi t ive .  NC) for T negative. and N':) = Ni 
for 7 zero. Then 

The functions are 

It is interesting to aote from this Eqoation that 
G;k (f) = Gf; (f). and therefore the ovgr-au power spec- 
trum of the signal is 

where 

In some cases, the time sequence generating the transj- 
tions may be partly periodic and partly aperiodic. h 
such cases, these parts are calculated separately. 

When a substitution z = e-"'* is made in the fuoc- 
tions P,k (e+'*), the resulting functions P,k (2) are known 
as the generating functions of the sequence. Similarly, 
the matrix P ( z )  containing these functions is the gemat- 
ing matrix of the sequence. The varkble J is chosen for 
reasons discussed in the Part on hfarkov processes. 

So far, the analysis given has been general and applies 
to any sequence which changes states at integral multi- 
ples of a basic time division to. The sequence may be 
either periorlic or aperiodic, except that use of Eq. (15) 
is limited to periodic sequences in which all correlation 
functions have equal periods T. 

6 
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II. C t  TlON 

A. The Markov Process 
Part A of the preceding Sectim developed the basic 

power spectrum of a modulated sequence without regard 
to the type of sequence, except that it was (me of discrete 
states which could change at multiples of a basic time 
division to. The d’xrete states themselves were not lim- 
ited in a y  fashion, except that there were only a Enite 
number a of them, and that each state might be con- 
strued to be some sort of decision. This part of the Report 
derives the power spectrum when the sequence is an 
aperiodic Markov chain. 

The aperiodic Xfarkov chain (Ref. 4) is a randgm 
sequence of the states El, - - - , E ,  such that the prob- 
abilities of sample sequences i are of the form 

P [(Eio* Ej,. - 0 7 Ej,,)l = Pigi,jlPj,ft - Pj,, -z I,, - ,Pj. - lin 

(23) 

in terms of an initial probability distribution {pk} for the 
states { E t }  at an arbitrary time {zero), and ked condi- 
tional probabilities p,t  of 6, given that Ei  was &e pre- 
d i n g  state of the sequence. This merely indicates that 
at time zero there exists a certain probability distribu- 
tion {pt}  as to which of the set (Et) of states will be the 
first dement of the sequence. After this, given that the 
sequence state at time n is E,, the probability that Et 
occurs next is p , k .  The over-all probability of having a 
certain sequence of these states occur is the product of 
the Probability that the Erst occurs times the probabili- 
ties that each state is followed by its proper successor. 

The transitional probabilities p , k  may be arranged in a 
matrix p, with pik in the ith row, kth column. Such a 
matrix is called the trcinsitwn matrix or stochastic matrix. 
This matrix P, together with the initial distribution {n], 
completely determines a Markov chain. 

The quantity is defined to be the ProhabiIity that 
state Ek occurs at the nth transition after state Ei. 

Obviously, this is 

The transformation z = e+’* in the generating func- 
tions P,*(z) bears great resemblance to the z-transforms 
of linear sanipleddata systems (Ref. 8). This concept b 
even more strongly supported by consideration of the 
Markov process on a flow-graph, as shown in Fig. 3. 
This Figure indicates the states E,, - - - ,E .  by a nodes 
and the transitional probabilities p , t  as arrows connect- 
ing these nodes. 

... 
0 SEQUENCE STATES 

Fig. 3. How Graph of a Markov Process 

When each term of the graph is multiplied by z (Fig.4), 
and a unit input to E ;  is applied, the output at Et is 
found to be exactly the same form as Eq. (22) (Ref. 9). 
This leads to the conclusion that P , t ( z )  is the transfer 
function between Ei and EL when each leg of the Bow- 
graph of the hfarkov process is multiplied by z. 

by using Eq. (a). 
The entire generating matrix P ( z )  may also be found 

By these two methods, the generating functions may be 
found. There are other methods which are especiaIIy 
useful in special problems (Ref. 4), but these are beyond 
the scope of this Repol*, 

The remaining quantity to be found is the contr i i -  
tion of the periodic part of the correlation Rir(r)  to the 
terms C , k ( f ) .  If the Markov chain is aperiodic. then p‘$ 
approaches pk for large n; that is, after many transitions, 

7 



Progress Report No. 20-387 

let  Propulsion Laboratory 
.Iyi 

- 

EACH TRANSITION PROBABILITY wnnpiio BY 2. 
TRANSFER FUNCTION BETWEEN NODES I AND j 
IS THE GENERATING FUNCTION p,, (I). 

Fig. 4. The z-Multiplied Markov Graph 

the probability that Et will 0cC"ur is not really a function 
of whcther or not E, cvcr occurred. The correlation is 
therefore asymptotic to 

This has the spectrum of some periodic component. 
which, according to Eq. (6), is 

(27) 

Combination of this result with Eqs. (2.5) and (21) 
gives the complete p w c r  spectrum of the aperiodic 
hfarkov process: 

(28) 

The notation usd in q. (28) is: 
8 (f) = the Dirac delta function 

p,, - - - ,/I. =.the sta*ionar)- probability distribution 
of the Markov chain 

PI;' = the probability that the signal hi( / )  . occurs at the nth transition after the 
occurrence of the signal bi (I) 

c 

c 
Pij(z) = Z P!i'Z" 

121  

h, (I), - - , b, ( I )  = the set of modulated signals 
Notice that the first term (spike spectrum) of this 

equation vanishes when 

which implies that a necessary and sufficient condition 
for the absence of spcctral spikes i s  that 

The discussion here has been devoted to the physical 
aspect of the Markov spectrum. A more rigorous treat- 
ment may be found in Appendices A and B. 

The modulated set may be regarded in the frequency 
domain as a modulated vector H ( n .  This vector has a 
conjugated, weighted transpose [pH*(f)]' .  \%'ith these 
notations, Eq. (28) may be rewritten 

2 
f0 

(31) + - Re { [pH* ( f ) l r P  (e-jai*) H v)} 

Basically, there are two t?pes of signals y ( t )  which 
will be discussed in the remainder of this d o n .  These 
two  class^ of sign& are defined in terms of the manner 
by which they are generated. 

Each class is defined in such a way that certain sym- 
ma;ries exist, in order that certain simplifications of the 
spectral eqwation may be made. The 6rst class is desig- 
nated "negative equdly probable," and consists of that 
class of Markov processes for which the fint and third 
terms of Eq. (28) vanish. The second class, designated 
-negative equally probable, same sign slope," eonsists of 
those XIarkov processes for which Eq. (30) is satisfied 
(no spectral spikes), with transitions arranged 50 that the 
slopes at the.trmsition times do not change sign. The 
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behavior of those processes will become more apparent 
upon detailed study of each in turn. 

and, therefore, 

S. The NEP Process 

probable) process if (1) for each element hi ft) of the 
modulating set {hi (t)) of a Markov process, -hi ( t )  is 
also in the set, and (2) the stationary probabilities on hi (I) 
and -hi (t) are equal; also, the transitional properties of 
hi ( t )  are the same as those of -hi (t). That is. pit = p,, 

A signal y ( t )  is said to be an NEP (negative equally (34) 

Note here that the phase angle +;, by which the sinusoid 
is shifted with respect to the Markov sequence, is of great 
impo*nce in the region (., > > m,). In fact, for an). +i. 

each term of Q- (31) is en\&+ by 

whenever hj (t) = kh, (t), and he (t) = kh. (8). 

This process has been specifkally defined so that there 
are no spectral spikes and so that the transitional prop  
erties th-mselves do not affect the over-all spectrum. In 
this case, as a direct result of srrbstitution in Eq. (W, 
the spectrum is 

The Equation Shows that if +i is non-zero, or is not an 
integral multiple of z, then the spectrum ultimately 
decreases 6 db/'octave. When +, is zero or nr, the spec- 
trum falls off at 13 db/octave. Note, however, that the 
rate of approach to the 6-db aqmptote is determined by 
+,, in that for oi near zero (but non-zero). the spectrum (32) G ( f ) = ' i  fo iL-1  PiIHi(f)J' 

seems to approach the E-db limit; but as m becomes suf- 
ficirntly large, it ultimately changes over to the 6db  
limit. That is to say, the density function chooses a cross- 
over frequency my at which it changes from a E-db to a 
6-db/octave asymptote. This occurs at 

Note from this equation that the over-all NEP spcctrum 
is merely the weighted sum of the energy spectra of each' 
individual hi (t)  in the modulated set. It is sufficient, 
therefore, to have a knowledge of the behavior of each 
component p ,  { H, 0 1 2  in order to predict the spectral 
density of the whofe process. This is not true, in general, 
for the more complicated N E B  process. 

Example 1: NEP Sinusoids 

Consider the NEP process, which has the following 
propertk: 

hi ( f )  = sin (.lit 4- +;) 
1 

pit = = pi 

nia 
uj -- 

c 3  

- 

a = Zzf 

with ni integd; then, by Fourier transformation, 

The curve is asymptotic to 12 db/octave up to ..rr 
beyond wvlk!i it then becomes asymptotic to 6 db/ortawe. 
In the two limiting cases. +, =O and +i  = =/?, the c u m  
have only one aqmptote, because m, is either at infinity 
or a t  mi  v. 

Random phusc. When each 4, is considered to be a 
random variable. uniformly distributed over the range 
(O-%), the resulting spectrum is the average over this 
range that is, each term is of the form: 
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This result is important when compared with the results 
of the next part of the example. 

Example 2: N E P  Square Waoet 

Let hi (t) be a unit square wave of ni halfcycles per 
tn, and pi = l/a. Then, designate mi = nin/t,. In the 
frequency d w h ,  

Conwlution of spectra. Let the signal y (t) be generated 
by multiplying a sinusoid x ( t )  by a Markov sequence 
rn (t) of ones and minus ones. This signal, y (t) = x ( t )  rn(t), 
b?as autocorrelation 

t- (si:) e - f ( M f . + T r t  m. z -I  e - j t~ t .*a lr>~ / l r  

RU(.) = E [ x ( t ) s ( t  + T) m ( t )  m ( t  + T ) ]  (38) (f) = II, k = a  

(*I 
Let it be assumed that x (t) and m (t) are independent; 

if such is the case, then the above equation factrn into The power spectrum is given by 

It is well known that functions which multiply in the 
time domain convolve in the frequency domain: 

The Markov sequence itself has spectrum 
Note that this is asymptotic to 6 db/octave when - = 2 4  
is large. 

The spectra for single NEP sinusoids and square waves 
are plotted in Fig. 5 for comparison. Note that the 9O-deg 
shifted sinusoid distribution falls off at approximately the 
same rate as the square wave. 

and the sinusoid has spectrum 

G. (f) = 3 [a (f - fl) + 8 (f + fl)l (42) 

Their convolution is 

if m1 = d / t -  with n integral. Comparison of Eq. (43) 
with the results of Eq. (34) shows that the two functions 
x ( t )  and rn(t) are not really uncorrelated, but for 
m > > m,. and + # 0, the same shape spectrum is obtained. 

In fact, it is seen that when +i is equal to ~ / 4 ,  Eqs. 
(34) and (43) are the same; ab, FA. (a) corresponds 
exactly to the case of Eq. (37). where +i is a random 
variable. unifordy distributed over the range (0-24. 

C. Tbe NEPS Process 
A signal y(t) is said to be an NEPS (negative equally 

probable. same sign slope) process if (1) both hi(t) and 
- h, (t) are in (h .  (t)), their stationary probabilities are 
equal, and the transitional properties are such that 

h, (9) = h, (t.) = 9 and (3) the slope of y(t) does not 
change its sign at transitions. 

By these axioms, the N E B  process not only has an 
absence of spectral lines but also provides the possibility 
of a smoother transition between wavclCorms in adjacent 
positions of the output The process has been defined 50 

that the slopes at t = 0 and t = t. exclude certain txansi- 
tions. The slopes a t  cross-over times allow the set {hi (t)} 
to be partihoned into 4 subsets: 

pij = prs if hi ( t)  = -h, ( t)  and hj ( t)  = -h. (t); (2) 

(b.} = (b,(t);slopc(+)at t = O . ( + ) a t t . }  
(bo) = {bj (t);slopc{ +) att = O,( -) atla) 
Vd = (-4 

= {-b8}  (46) 

10 
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Fig. 5. comparison of Binary NEP (Random Process) Spectral Densities for Sampled Seta 
of Square Waves and Sinusoids for Various Values of ni 
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The transition matrix P is partitioned in the same fashion: 

(47) 

The NEB-process power spectrum (see Eq. 31) is given 
by the Equation 

which involves positive waveforms LI and f l  ody, with 

This result is derived in Appendix C. 
As a special application. consider the case with all 

eligible states equally likely (all non-zero elements in P 
are 2,h). The matrix E is composed of q rows of +!?/a 
and r rows of - 2/a; that is, there are q -even" wm'e- 
forms and r -odd'' waveforms. Direct calculation shows 
that 

The matrix E (z)  is the converging series 
~ 

Thus, th, third term of Eq. (31) is 

This N E E  process. therefore, has spectral density 

with sums only over positive waveforms a and 4. For 
the simple case for which q = r (equal number of wave- 
forms in (h,  (t)) and {hs ( t ) ) ) ,  the spectrum reduces to 

Clearly, the N E B  process is defined in such a way 
that the modulated set cannot be composed entirely of 
even waveforms, for if it were, the inverses in the set 
would never be sampled. However, they may all be odd 
waveforms; in this case, q = 0: 

Exnniple 3: NEPS Sinrrsoidt 

Consider a N E B  process described by 

b, ( I )  = sin (*,r) 
a = 4,with 

so that n, is even and n, d. The transition matrix P is 

1 1 0 0  .=*[: : ; :I 
1 1 0 0  

Pa$. 12 



Progress Report No. 20-387 

- 

The Hi (fj are given by Eq. (33); the spectrum is 

Notice here that as (d gram large, G If) decreases approxi- 
mately 12 db/octave, and that G (f) falls off most iapidly 
near the fundamental peaks if n, .and are adjacent 
integers. 

Example 4: NEPS Square-Wares 

Consider the case described by the matrix in Eq. (555, 
except let the modulation be unit square waves of n, 
and n2 halfcycles per to period. The H ,  (f) are given in 
Eq. (44). Upon substitution of these values into Eq. (56). 
it is found that the spectrum of this NEPS square-wave 
process is 

(581 

This formidable Equation has been solved by a digital 
computer for several values of n, and (the CUN~S a m  
shown in Fig 9). 

D. Observation of Spectral Spikes 
As may be seen from Eq. (28). the spectrum may, in 

general, be thought of as being composed of two parts: 
a spike-spectrum C,(f). and a continuous spectrum 
G,(f). In both the NEP and N E B ,  probabilities have 
been chosen to eliminate G, (f). However. now consider 
the case for  which the weighted sum of the waveforms 
does not vanish. In particular, if the stationary proba- 
bilities between a waveform h, ( f )  and its negative differ 
by an amount F,  then the ccntinuous spectrum does not 
change appreciably if c is small. The power contained 
in a given band ~ f ,  directly attributable to C . 0 .  as 
compared to the continuous spectrum in this band, is 

Here it is assumed that only one spike lies in the af 

range. A receiver sees the spectrum as 

In order to evaluate this Equation to obtain an order- 
of-magnihide picture of the spectrum where spikes 
should appear, let {h ,  ( t ) )  contain only ~c_hi(t), and 
assume C,. (f) to be fairly constant within the ~f interval. 
The ratio for an NEP process is 

if F is small. This says that at points of the continuous 
spectrum (when Cr(f) is about constant), the deviation 
due to spikes is small if E is small. 

This analysis has considered that the time of integra- 
tion in a given bandwidth ~f was infinite. Frequency 
analyzers which publish spectra based on short integra- 
tions may, therefore, show great deviation from the 
expected behavior discussed here. In order to Qbtain 
reasonable looking results from an analyzer, integration 
time must be long compared tu the reciprocal of the 
analyzer bandwidth, 

13 
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111. Q- ION 

A. Random-like Sequences 
Pseudo-random sequences ai sequences which pos- 

sess certain qualities of randomness, yet are determinis- 
tic and periodic in nature. Specifically, their properties 
are such that the sequence appears to be some random 
sequence (such as Markov). These random sequenced 
may be g;Jnerated in many fashions, most commonly by 
recurrence techniques applied to shift registers. if such 
a sequence is binary, it is known as a PN (pseudo-noise) 
5X?qUeDCe. 

In restricting the discussion here to periodic sequences, 
it is evideni that no continuous spectrum will be present 
in G(f); rather, pcwer will be concentratd- at discrete 
frequencies. Also, these periodic sequences (as yet unde 

true for the hlarkov chain. The quantities p'$ are now 
relative frequencies of transitions per period. 

fined) are such that, in general, P # (p::))  = PIn) .as= 

In order that a sequence be pseudo-random, it is neces- 
sary first to specify relative frequencies of occurrence 
for each state in the sequence; second, one mwt specify 
the type of transitions which may be made between the 
states; 2nd third, some property must be assigned to the 
sequence b order that it appear random to a certain 
degree. 

.4lthough these specifications are usually interrelated, 
the first, relative frequency, is usually Kxed by the man- 
ner in which the sequence is <c*ncrated. The second, 
transition, is dependent upon n Iiat modulation charac- 
teristics are desired and what rariclomness properties are 
to be assigned to the sequence. Tfie random properties 
are conveniently established by the mrrelation functions 
R , ~ ( T ) ,  as described in Sec. iA. The correlation matrix 
R (nt,,) has heretofore been givca the nctation (p,p'$) 
for convenience. 

If it is druird that the scquence appear hfarhvian, 
then it is merely necessary to insure that the R , k  (7) of the 
two sequences have approximately' the same shape over 
a range ( - T / 2  4 r + T/2) ,  outside of which the non- 
flodic correlations are zero. As discussed previously, 
non-zero values of correlation outside this range, if con- 

'Recent work at the Jct Pmprrlsim Ldmatory  bas shown that no 
perindic scqtirnre may satbf'y this pmpmty exactly. 

stant or fairly constant, do not disrupt the s+&ra greatly, 
except for causing some discrepancy in the de levels. 

The only problem which arises in characterizing a 
pseudo-random process (which is to appear Markovian) 
is the approximation of the conditions @yen above. 
Luckily, there are several methods by which this may he 
attempted. Perhaps most widely known are those methods 
which employ h e a r  recurrence techniques to a-level 
shift registers. Several non-linear techniques are aL0 
known, which exhibit many desirable characteristics. 

For certain Markw processes, the corresponding peri- 
odic' pr~cess is easily found. For example, a binary 
Markov sequence which has two-lese1 correlation is easily 
approximated by the PN sequencewhich eko p~ssesses 
two-level correlation. In other cases, however, &e appm-  
imatfon is more difficult and somewhat more crude. For 
tlicse reasons, the particular sgcence whiA gives a 
Markov envelope to spectral lines must be chosen care- 
m y .  

B. linear Recurring Sequences 

In this Part, the power density function of a certain 
type of sequence is developed. In general, the sequence 
does not behave properly to produce Markov properties. 
However, in certain cases, very desirable results can be 
obtained by using such a sequence to modulate a set 

{hi (0)- 
Given a sequence, {b i } ,  and a set of mfficients, (G 

c,, - - ,c,,,), each composed of elements over a finite field 
K, the sequence is said to be linearly recurring if all seg- 
ments of the sequence with length ni + 1 satisfy the 
relation 

Such a sequence is easily mechanized by shift registerr. 
as shown in Fig. 8. 

Much work (Refs. 6 and 7) has been done on such 
sequences, and an abundance of information is available 
r m  the suhject. The major portion of the theory is beyond 
the scope of this report; howtwr, a few signiPcant p r o p  
erties hear discussion. 

ri 
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MULTlF'LtERS 

0 -LEVEL SHIFT REGISTERS 

C. SEOUENCE OUTPUT 

MULTIPLIERS AND ADDER PERFORM OPERATIONS 
ON THE FIELD K COMPOSED OF o ELEMENTS. 

and the transition matrix is 

P =  

1 1 
U a 
- I . .  - 
1 1 
a a 
- ... - 

The transition matrim P(") are equal for all n + O mod 
0 mod s, the matrices per" s, s = p/(a - 1). When n 

are composed of elements 

Fig. 6. Merhod for Generating Linear 
Recurring Sequences 

. - _ _  - - - - - - - 
First, due to the fact that the elements of the sequence 

lie in a finite field, l ~ ,  the numbr of states E, . - . E. 
must be a of a prime. pa-cular, if the 

(See  Fig- 7) for some primitive element A of the field (both 
i and k are also members of this field), and 8 (k, Ar i) is the 
Kronecker delta. The primitive A is the element 

of states is (I, then K-is the field with u elements, and 
a = 9k for some prime q and positive integer k. 

Such a linear sequence which is of maximum length p 
is called an m-sequence, of level a and period p.  The 
m-sequence which satisfies Eq. (62) has period p = urn - 1, 
and all states except one oceur a'"-1 times during this 
period. The excepted state is the one corresponding to 
the "zero" of the finite field. which only mx~irs  a'"-1 - 1 
times; this state skdl be designated E.. 

The subsequences (Ei, * - EiJ, k elements long 
m), each occur am -k times, except those in which all (k 

Ei are E.. Those occur a'" -*  - 1 times per perioil. 

Another significant property is that the sequence 
formed by adding to each term b i  of a given m-sequence 
that term of the sequence which is translated by r, bi .L ,, 
is the same sequence translated by some integer d; i.e., 

hi, .  = bi + h i . ,  (63) 

This is commonly called the Mcycle-and-add" property. 

The frequencies of occurrence (designating E. as the 
state corresponding to terms bk = 0) are 

A = b,,,bi' 

Fig. 7. Period-Normalized Correlation Functions 
for the Linear Sequence b. = bn-x + -'b.-, 

Over One Period 

1s 
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for all non-zero elements b, of the sequence. The weight- 
ing functions Gi& (f) ane "=-- 

(70) 

If the PN sequence has a long period, the spectrum 
appears to be the Markov process of two equally likely 
States. 

Figure 8 compares the binary NEP spectrum to that 

+ p ;  I=-= 8 (h, x.4 e-ja-t. ] (67) 

Because of the Kronecker delta in this Equation, the last 
term is actually - experimentauy obtained from a PN sequence. 

Notice that when o = u - 1. 8(k,A8-1i) = 8 j k .  If eitha 
i or k is the zero, then 8 (k, i )  = 8 , k  for an I). The spectral 
density of the mod~dated m-sequence is 

a :  -f 

Fig. 8. Comparison of Normalized NEP and NEF 
Spectra for the Case a = 2 

When the sampled set (hi (t)} contains both (t) and 
-h,  ( t )  for all i L a ,  then the sums )= I: H:(f)  H & ( f )  
vanish; this simplifies the spectrum somewhat, but in gen- 
eral, QMS terms still remain in the triple-sum term. When 
such a simplification is made, the process is =id to be 
NEF (negative equally frequent). 

a m  

* I 1  & - I  

C. The NEFS Process . 

'RE preceding Part has shown that, under certain COD- 

ditions, the Markov NEP process was approximated to 
an amazing degree. The spectrum of the periodic COUD- 

As a special case, let n = 2 (PN sequence) with H, (f) = 
- H* 0. Then 
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terpart of the N E B  process is determined by a somewhat 
cruder technique; the envelope is slightly in error, but 
the error decreases as the period becomes long. This less 
elegant approximation is adopted in order that a linearly 
recumng m-sequence may be used a5 a random-like 
sampler of {hi ( t)} .  Although it may be possible to gen- 
erate a sequence which will give resalts which look more 
like a Markov process, m-sequences have k . 1  previously 
discussed and wifl, therefore, be used in this rreatment. 
A periodic process is said to be NEFS (negative equally 
frequent-same sign slope) if (1) both hi (t) and -hi (f) are 
in {h i  (t)} and their frequencies of Occurrence are nearly 
equal; (2) the transition frequencies between any two 
states are approximately equal to the transition frequen- 
cies between the two corresponding negative states; and 
(3) the slope does not change sign at transition times. 

Sequences are restricted to those in which errors in 
frequencies of transition and occurrence stated above in 
(1) and (2) decrease as the period lengthens. 

In choosing m-sequences to modulate {hi (t)), each of 
the aI states Ei of the m-sequence chooses between h, (t) 
and -hi (t), selecting the one which has the proper slope 
for transition. In this way, the set ( h i @ ) }  must have 
u = %I, elements, 9 of which are even wavefoms and r 
of which are odd. Both 9 and r are even-integers; also, 
a, is chosen to be esen, and a, = 2k for some positive 
integer k. The period of the process depends on whether 
an even or odd nu.nber of odd waveforms oecu per 
m-sequence period. If the number of odd waveforin OCCUT- 

rences is even, the NEFS period equals the m-sequence 
period; otherwise, it is twice as great. The only state 
which occurs an odd number of times in the m-sequence 
is E.; therefore, h,(t) is set to be au even waveform, in 
order that the NEFS period is p, the m-sequence period. 

Because of the postulated symmetries (2). the analysis 
given to NEPS processes also applies here, and e. (4) 
describes the specZrurn invoIved, with the exception that 
the matrix E ( r )  is 

E 

E ( z ) =  2 E'n)z(l 
a - 1  

(71) = &n) - Ctr) 

These matrices Etn) are, of course, periodic, with 
elements p!;' - When n = 0 mod p, E(") is the 
identity matrix. When n O mod t = p/(u - I), the 
matrix elments are 1, 0, or -1, depending upon i. k, 
and n. Using previous notation, 

(72)  

For other values of n, E(.' behaves as 

Elements of the error matrix E(') have magnitudes on 
the order of l /p for large p and n 4 rn. (See Appendix D 
for discussion.) This is the type of expression obtained 
for E(n) of the aperiodic process, except for some small 
error. When at least one even and one odd w a v e f o ~ ~ ~  
pair are present in the set {hi  ( t ) ) ,  and E. represents an 
even pair, then the values for p:r' - N u / p  due 
to the fact that for long periods. roughly half the waves 
are reversed per period, and at intervals of (os) the 
m-sequence correlations R,t (os)  are maximum or else 
totally uncorrelated (Fig, 7)- For long periods. these 
terms are neglected. and the power distribution is 

(74) 

where the sums mer a and p include positive waveforms 
only. 

The assumptions which have been made are that 
the period is long so that a11 p t  are equal (within l/p), 
all non-zero pi:' are equal (within l/p), and that 

As a special case, let q = r, with a binary PN sequence 
operating in the fashion described. Then s = p and a = 4. 
Equation (74) simplifies to the approximate spectral den- 
sity of the prows, 

l(v- r) / (q  + 43- 5 < 1. 
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Here again, the envelope of the spectrum is seen to be 
governed by a Markov process, within a constant multi- 
plier. and the spectra appear to be the same to receivers 
whose bandwidths are greater than l/pt,,. 

Because- of this -envelope” relation between the two 
pmccsses. the spectra of Examples 3 and 4 are also exam- 
ples of the NEFS process, when weighted by the proper 
mnstant and midtiplied by the delta-function series. 

Figure 9 compares the a = 4 NEPS spectrum to that 
experimentally obtained by PN modalation. 

D. Other Random-like Sequencer 
Compuison of the delta-function envelopes of the 

binary NEF and N E B  processes to the spectra of corre- 
sponding random Xlukov processes shows that they are 
the same, within a constant multiplier; also. in the limit. 
as the periods become very great, the two become the 
same, indicating that the long PN sequence is, as far as 
its spectnim is concerned, very nearly random. 

The PN sequence, by definition. has been set to b a 
binary m-sequence and, as such, can only choose between 
two signals in a modulating set. Since the PN sequence is 
easy to generate, selection of waveforms in {h, (t)} by 
means of Boolean functions of the shift-register states in 

4- 
Fig. 9. Comparison of REPS and NEFS Spectra for the Car. Q = 4 
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a PN sequence (word detection) is sometimes desirable. 
However, because of the cycle-and-add property (Eq. 
63), these states may not have goad correlation proper- 
ties, and the spectra obtained in this sampling may be 
totally unlike their Markov counterparts (as is also true 
d the general rn-sequence, a > 2). A better solution tr, 
this problem is to provide word detection on several 
independent PN generators of different periods. 

In most cases. these PN sequences, or 
sequences. produce spectra romparable 
to Markov spectra. When such is the case, since detection 
by conventional means ~nvolves sampling of data over a 
bandwidth ~ f ,  spectra obtained from both%ia&ixqproc- 
esses and pseudo-Mzrkoq processes appear to be the same 
when the period of the pseudo-random sequence is large 
compared to the reciprocal receiver bandwidth I/Af. 



IW. co 

rimrental R esuk 
The experiments k e d  upon the-preceding p21~i of 

this Report were perfonned basically to determine the 
theoretical appearance of the spectra and secondly, to 
verify by actual spectral measurement that the theoreti- 
cal curves were achieved to some degree. The first experi- 
ments were performed on an electronic digital computer 
for the h' rkov NEP and N E B  sine and squarewave 
processes. Such experiments were carried out only on 
simple cases, in which the mathematics involved did not 
require long programming time or lengthy calculation 
within the computer itself. The results which were 
obtained are plotted as the hXarkov spcctra of Figs. 5. 
8. an6 9. 

AI1 the processes investigated in this way were binary 
processes (Le., the sequence was binary), and the carriers 
were either sinusoid or square waves. Only binary cases 
were considered for two reasons. First, for the NEP 
prccess. any a-level process is merely the weighted sum 
of binary processes (see Eq. 32)); and second, the Markov 
and linear-sequence promses only correspond for binary 
sequences. 

The linear m-sequence spectra were measured using a 
sweeping-oscillator type of spectrum a u a l p x  The actual 
pseudo-random modulated square-wave process was s p -  
thesized on a miniatrirc I.iboratory digital computer, as 
shown in Fig. IO. This computer is basically a bank of 
dynamic 'andw gates, "or" gates, and delay lines, rr;?dily 
programmed to form flip-flops, sequence genrrators (see 
Fig. 6). and car% grnerators (square waves). 

The period of the m-sequrnce was set 50 that the width 
between spectral lines of the prcwess was lrss than the 
analyzer bandu idth. These analyzer c ~ ~ n ' e s  are shown in 
Figs. 5 . i d  9 for both the NEF and NEFS processes, 
and are compared to their Markov KEP and NEPS 
counterparts. 

Thcsc plots speak fairly well for themstves. They 
show that, as prdicted mathematically, the random and 
pseudo-random spectra agree quite c?osely. It must be 
remrmbcrcd that one of the curves (Markov) is calcu- 
lated and that the other (m-sequence) is measitred, and 
therefore some t o l e ~ n c e  due to annnlyzer bandwidth is 
in order. Such a discrepancy was not thought to be great, 
and the error encountered was not even calculated. 

GENERATOR r z h Q l -  

b 

WFT REGISTER GENERATES B I W  m-sEQuR(Q 

Fig. 10. Block Diagrams of NEF and NEFS 
Square-Wave Process Generators 

B. Conclusions 
Random and pseudo-random sequences may modulate 

signals in such a way that concentrations of powx a t  spe- 
cific frequencies art: not apparent. If the autocorrelation 
functions of the two sequences are closely similar over a 
period of the pseudo-random sequence and the random 
siquence correlation is fairly constant outside this range, 
then the spectra resemble each other. Furthermore, i€ the 
period o€ the deterministic sequence is greater than the 
reciprocal of the receiver bandwidth, the periodic proces 
has a spectrum which appears to be continuous and the 
same as that generated by a purely random process. 

As simple as this seems, it may be shown that a periodic 
process never possesses exactly the proper correlation 
matrix for a Markovian spectnim. I.Towever, approxima- 

20 
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tions to this behavior are possible, as has been shown 
for binary rn-sequences. The correlations of m-sequences 
in general, however, do not look hhkovian (see Fig. 7). 
and therefore, the spectrum of a process modulated by 
these sequences is not c q e t e d  to look like a Markov 
spectrum. The problem encountered in attempting to 
make the two spectra appear the same is not an easy one. 
In the ser.se that general n-sequenws do not offer the 
desired characteristics, Booleaa functions of particular 
states in a binary m-sequence probably do not give 
desirable results either. 

When transitions between uaveforms are such that 
negative waveforms are as likely to occur as positive 
waveforms, the power spectrum of the corresponding 
process is merely the weighted sum of the energy spectra 
of the sampled waveforms. When these waveforms are 

sinusoids, the phase shift between the sinusoid and 
sequence determines whether the speckmm decays at 6 
or 12 db/octave, and the point at which a cross-over 
between 8 and 12 db/octave OCCUIJ. For square waves, 
the spectra decay at 8 db/octave. 

When transitions are arranged si) that slopes cannot 
change sign at transition, the spectra decay at the same 
rates, but larger, more pronounced peaks located near 
fundamental frequencies of h, (t) occur. This means that 
these processes are doubly importaiit: first, from the point 
of view that such a process may be easier to mechanize 
by reason of the’srnoother transition, and second, from 
the point of view that it is possible to create a broad band 
spectrum which falls off rapidly outside the band. To a 
transmitter, this meam that power is not wasted outside 
the desired band. 

Page 21 



a = number of sbtes. 
A = c&mn vector of the positive waveforms in 

B. C, D, E = matrices used to derise the NEPS spectrum. 
bi = sequence element chosen from bite field K 
ci = feedbackcoefficients for thelinear sequence. 
Ei = ith state of the sequence. 

the frequency domain. 

E [XI = mathematical expected value of X. 
f = frequency. 

C v) = output spectral density. 
C i k  (f) = cross-spectral density of the seqrience states. 
hi (t) = member of a set of modulated signals. 

H i  (f) = Fourier trmdom of hi (f). 
H = column vector of the frquency-domain 

states. 

i,ftE,m,r,s,u = integer-vahd indices. 
Zk = k x k identity matrix. 

;=-* 

K = finite field. 
L = length of the sequence. 
P, = number of half-cycles per switching period. 

3’;;) = number of times state E j  occus at nth tran- 
sition after Ei. 

p = period of the wquenee. 
pj:’ = relative frequencies at which state Ej occurs 

at nth transition after Ej. 
P i k  (z)  = generating function. 

P ( z )  = generating matrix. 

R (m) = correlation matrix. 

x (t)  = a periodic process. 
y(t) = output signal. 



Y, (f) = Fouiier transform of yr (t). 
a, 8.7, c = subscripts of the wavdmns hi if) denoting 

Clsu; 
8 (f) = Dirac delta-function. 
A = increment 

A r m  = Fourier transform of 8, (f). 
F = an arbitrarily small quantity. 
f = mnvdution variable. 
x = ratio of spike to continuous spectral power. 

= primitive element of fiekl K. 
r = correlation variable. 
+ = phase angle. 
m = -3zf = angular frequency. 
* = complex conjugation. 
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IX A 

Derivation of the Markov Spechum 

Proof of Eq. (23): The signal y (t) is obviously a meas- The Periodic Part: For aperiodic hlarkov chains (see 
Ref. 4, Chapter XV), p!;'-+ pt, so that the periodic part is urable function of t. Under this condition, if 

+ c". (fl) bt (t + 1, - 
exists for all T, then there exists an integrated power 

spectrum' (A-5) 

If y(t) were a contintlous stationary process, it is well ai = .,t= I ~ [ t I ' * ~ > i ( r , ) b t ( t +  t , ) c F d r l d t  
known that + ( r )  E R (t. T )  = E {y ( t )  y (t + r ) )  with prob- 
ability 1. However, R ( ~ , T )  in the present case is not 1 j2i-l + I'*lIii (1,)  bt ( I  + I ,  - r,,) e - 7  dt,dt 
independent of t. In Appendix B, it is proved that t" 

+ ( r )  

R ( T )  = R(nto + t )  

R ( T )  with probabiIity.1, where 

In the second integral if we replace t by t + t.. 

(A , 
+ uIt (n + 1) /*=A, (4)  hi: ( I ,  + r - to) dt, (A-3) -* The expression in brackets is zero for It I > f, SO that the 

and limits can be replaced by ern, and it immediateIy 
follotvs that 

1 5 l i l t  ( # I )  - pipt]  /*abi (1,) ht (1  + tl) dtl 
tially (Ref. 4). Cokcspndingly, R ( r )  will have &odic 
components plus a part which has a finite integral of its t o  i . ~ =  -t 

absolute value. The first part corresponds to jumps in 
S(m), and the second part mrresponds to a part of S(-) 
which is the integral of a spectral density (Theorem of 
l'lancherel). 

+ [a,& (81 + 1) - p.pJ (1,)  bt (ft + - r")dr, 

(A-9) 
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4, Chapter IS) 

IX B 
Derivation of the Formula for Erne Autocorrelation 

Define 

Since y (t) is bounded, the limit exists if, and only if, the 
following knit exisk: 

If t is written in the form t = nt. + tl, where n is an 
integer, such that 0 4  r - nt, < th and the integral is 
decomposed into intervals of length to, then 

4 (% + tl) = 

Now define 

1 if the state during [mt,,, (m + 1) to] is Ei 
0 otherwise Di (m) = 

then 

and 

There are a finite number of terms of the form 



But that is just pi times pic’. Using the strong law of 
large numben, this Markov chain yields and their eoefftienis are constants as far as the variables 

m, n, and N are concerned, so that the limit becomes 
*-’ D, (m) Dk (m + n) = p.pt8i Jim I: 2 N ’  I it (B-11) x-m m=-n 

with probability 1. A similar discussion applied to the 
case R < 0 giver 1 r-1 Di (m) Dk (m + nl 

2N 

x pi ( r )  bt (t + 1,) dr 

The limits on the integrals can be made infinite because 
the integrands vanish outsi3e the actual range of integra- 
tion. 

Now,suppose n = 0; then D, (m) Dk(m + 0) = I,t.D, (m) 

( 5 7 )  

with probability 1, because the strong law of large num- 
bers holds (Ref. 4). If n>O, the process with state 
descriptions 

EiO.i, . .- . . i .=(EipEi,.  - - *  .Ei,) (B-8) 

is a Markov process with stationary distributions 

The probability that D, (m) Dt (m + n) is one is 

Then for each n. 

But there is only a countable set of values of n, so that 

1 R (nr. + I,) = - d,t (n) 1- bi (t) hk ( r  + I,) dr 
t o  i.t =I -0 

the preceding statement becomes Pr [It (T) = + (T)] = 1. 



Progress Report No. 20387 

Assume that the modulating subsets (he} and (4) 
contain q ever, states and t odd states, and designate H 
to be the column vector of the frequency-domain states: 

where tk is the unit matxix of dimension k = n / 2  and A 
is the column vector 

Since the stationary probability for hi (t) is the same as 
for -hi (t), designate the vector pA ta be 

The quantity to be evaluated is (pH+)'P(z)H,  which 
appears in the third term of Eq. (31). Clearly, 

(PH')' P (z)  H == (PA')' ( le ,  - l e )  P (I) [fi.l. (C-4) 

The matrix P ( z )  is evaluated from P by Eq. (m.. Since 
the P matrix is of the form 

B C  

C B  (C-5) 

it may be verified that P is also of the same symmetric 
form. Therefore the generating P (z) matrix is symmetric 
a h .  

Substitution of Eq. (C-6) into Eq. (C-4) gives 

(pH*)'P (z)  H 2 (PA*)' [ B  (2) - C (z)]  A (C-7) 

which is now an equation involving matrices of order 
k = a / 2  instead of uth-order ones Dehe matrices D 
andEtobe 

D = B + C  E = B - C  IC-8) 

so that 

By direct calculation, 

Also 

(C-11) 

(C- 1 2 )  

where it is noted that 

B(z j  - C(z) = E ( z )  

and hence, 

(pH*)' P (2; H = 2 (pA')r E (2) A (C- 1 3)  

But from Eq- (CS), it is known that 

(c-14) 

m 

. = I  
and, therefore, E(%) = z Em=*; then, 

Substitutim of this into Eq. (31) gives the desired result 
* -  (a. 48)- 
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Jet Propulsion Loboratory __. L_11_)_^__ 

DiX 0 
Derivafion of tRa MEFS Spectrum 

Consider the process in which an u1 level m-sequence 
samples the set {hi (t)) in such a fashiori that each term 
of the sequence Ei selects either hi (t) or -h, ( f ) ,  so that 
the slope docs not change sign in transition. Each of the 
a, states occurs times, except state E.l itself, which 
only occurs u7-I - 1 times. These differ by only one part 
per period. Similarly, the statts of the NEFS occur 
%(a:-l) and {%a:-1 - 1) times per period. 

In the nr-sequence, the states E, Et E,. Et OCCUT in 
sequelice uy-' times (if all i, j, m. k# a,). Select Ei and 
Et to be a specific transition, and assume that Ei is a 
positive even waveform and Et is a positive waveform. 
Then such a transition occurs 

per period; hence, 

By qmmetry, this is also true for all E:;'. This error in 
making the above statements is on the order of I/p. 
Similar reasoning shows that this approximation is appli- 
cable up to n = km and beyond, within a few errors 

also on the order of l/p. If these e m  are neglected, 

(*-3) 

Upon substitution of z = e-ju'*, the infinite series of expo- 
nentials becomes a series of delta-functions in the frequency 
domain. If the period is tong [(q - r)j(q 4- r)]*-l << 1, 
and therefore this term is negligible. Substituting this 
E (e-j"'.) into Eq. (48) gives the spcctrum in JCq. (74). 

It should be noted that errors encountered i3 this 
analysis are' only estimated to be of the order l/p. For 
E!:' up to IZ = e m ,  this estimation is fairly g d .  Beyond 
this point, mta in  sequences do not exist, and therefore 
decrease the factor multiplying E. This means that the 
factors I(q - r)/(q + r)]' are somewhat in error but are 
probably less than the estimated [ (q  - r)/(q + r)Ik. 
For this reason, it is felt that in dropping the term 
[ (q - r)/(q + r)]*-I, no great error is wmmitted. 
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